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Abstract. The long-time limit of the alignment function (or remanent energy E = -(wh)/Z) 
of the fully asymmetric SK model is investigated analytically for parallel ( E &  sequential 
( E , )  and random-sequential (Er,) update. As expected we find E,> E,> E , s .  The results 
are supported by numerical simulations. 

1. Introduction 

Several years ago disordered spin models with asymmetric couplings gained growing 
interest due to their relevance to neural networks. In general these models represent 
a certain class of systems in non-equilibrium statistical physics which cannot he 
described by means of a Hamiltonian. This fact causes several difficulties in treating 
them analytically. So, apart from huge numerical simulations, few exact results are 
known. 

The introduction of asymmetric couplings in the SK model [ 13 leads to a generaliz- 
ation with directed couplings J;, # J,j [2]. In general the couplings can be distributed 
completely independently (fully asymmetric case) or correlated by pairs. The problems 
arising in calculating the properties of these systems are due to the fact that no detailed 
balance condition holds and therefore no fluctuation-dissipation theorems exist. The 
stationary distribution has to be calculated directly by solving the dynamical equations. 
This turns out not to be possible in most cases, except in the fully asymmetric model, 
where some exact results are known [3,4]. 

Numerical simulations of the general asymmetric case with finite correlations 
between I ,  and J,; seem to indicate a transition from a state with vanishing to a state 
with finite remanent magnetization (i.e. the overlap of the initial and the final state) 
varying the degree of the asymmetry [5,6]. In this range only an expansion around 
the fully-asymmetric point is known [7], where the remanent magnetization is zero. 
This transition point itself remains controversial since older investigations of analogous 
systems with continuous spins claimed that for any finite degree of asymmetry the 
spin-glass state will be destroyed [Z, 81. 

8 Present address: Institute of Physical Science and Technology, University of Maryland, College Park, MD 
20742, USA. 
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In this paper we want to calculate the alignment (‘remanent energy’) in the 
fully-asymmetric model for three different kinds of dynamics (parallel, random sequen- 
tial and sequential). The remanent magnetization vanishes in this model for all three 
dynamics, a result which can be shown to hold exactly at least for random sequential 
update. The alignment function can indeed distinguish between them and is thus a 
quantity which is able to measure the influence of the update rule on the dynamics. 
The limiting state of the system is not known in detail, but the expectation value of 
the alignment function approaches a stationary value as can be seen below. 

There have been some attempts to analyse the influence of the update rule on the 
attractors in asymmetric spin glasses [9] and automata networks [lo]. They show that 
the stability of the metastable states is not affected by a change of the update rule, but 
the basins of attraction can vary drastically. For deterministic dynamics (and also for 
special cases of random update [lo]) cycles occur, in which always some spins do not 
point in the direction of their local fields. The alignment function is by definition a 
measure of this spin-field correlation and the occurrence of cycles will thus increase 
it. It is known that, in the asymmetric SK model, parallel update yields an exponent 
of the number of cycles of length two which is twice as large as the exponent for the 
number of metastable states, both increasing exponentially with the total number of 
spins [9]. Its alignment function is the highest one as will be shown below. 

We will use three different methods to calculate the long-time limits for the different 
dynamical rules. The simplest case, parallel update, can be treated by simple symmetry 
arguments. This result turns out to be independent of the system size and the topology 
of the underlying lattice. For random sequential update the well known path-integral 
formulation by Sommers is used, a powerful method in the derivation of almost all 
known exact results for this model. In  this case the analytic evaluation is restricted to 
the thermodynamic limit of the infinite-range model. 

For sequential update the situation is much more complicated. In general the 
saddlepoint integration cannot be performed due to the lack of ‘translational invariance’ 
of the spins as it is present for the other two update rules: the first spin of the update 
sequence is not equivalent to any other spin of the system. For any pair of spins there 
exists an order in which they have to be updated depending on the starting point of 
the sequence. This is the main reason why there exist no analytic calculations for 
sequential update in the infinite-range model. Nevertheless we could perform a new 
kind of improved annealed approximation which yields a very good result when 
compared with numerical simulations (a trivial application of the annealed approxima- 
tion would give a vanishing remanent energy). This new method of calculation is 
therefore, at least for the fully asymmetric model, a good way to get additional 
information on the properties of the system in the long-time limit. 

2. Definitions 

The quantity of interest, the ‘energy’ E, is simply defined as the long-time limit of the 
average alignment of the spins with their local field: 

E ( t ) =  - 

where h j ( f )  is the local field of spin i. This quantity depends on the kind of dynamics 
which is used: parallel (p), sequential (s) or random sequential (rs). The update rules 
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of the three dynamics are given as usual by 

where the brackets for random sequential update mean the average over all possible 
update sequences. In the discrete version of (4, which is used for numerical simulations, 
one chooses the (single) spin to be updated at a time step at random. Taking the time 
constant proportional to I /  N, the differential equation (4) follows in the limit of large 

'llr C""p"'.L&" a,= U l ~ L 1 1 " " C G U  a.ccu'u",~ L U  a un"'lLia,G UlDLllUULlULl W l U l  lllUlllFLLLJ 
t., 7L^ ̂̂ .._I :""" --- A:"&-:L __.^ -I -*---A:-- .^ !-:..--:-.. A;.&-:!-...:-- ... ;&I. _^_^I._ 
1.. 

(Jy)= (45) = O  ( J ; ) = ( J j i ) =  J 2 /  N' ( J v J j ) = A J 2 / N '  (5) 

where N ' =  N -  1. Note that it is not necessary to assume a Gaussian distribution or 
any details of the higher moments, since only the first two moments contribute in the 
thermodynamic limit. We will consider exclusively the fully asymmetric case with A = 0 
for which severa! exact resu!ts are known: 

3. Parallel update 

The simplest case is parallel update. The update rule (2) shows that a global transforma- 
tion J, + -J, only changes the sign of U: at odd time steps and leaves it unchanged 
at even time steps. Therefore the magnetization, averaged over all configuration of the 
couplings, is zero for all odd time steps, independent of the initial conditions U:. At 
even time steps the magnetization remains unchanged. It follows that the quantity 
u:J& changes its sign under the transformation of the J ,  independent of the parity 
of r and the average energy is zero for all time steps. This simple argument is valid 
for all kinds of lattices and system sizes. Note that it applies also for symmetric 
couplings. 

Another consequence is that even the quantity 

will vanish. This means that, on average, one half of the spins flip at every time step. 
This is the reason for the huge number of cycles of length two in the asymmetric SK 

model mentioned above. 

4. Sequential update 

in the case of sequent& update \ye have us& a kin; of a srif-consisieni anneaie,j 
approximation, because the functional-integral approach in the present formulation 
cannot be applied. Nevertheless the result is in excellent agreement with numerical 
simulations of the quenched model, which depend only very weakly on the system 
size. In the following we present the calculation of the remanent energy. 
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Since we want to use the annealed approximation we introduce new couplings after 
every run through the system, i.e. asking neuron 1 to neuron N for flipping. This is 
said to be one time step. Since the distribution of the couplings is even, it is possible, 
at every time step, to choose separately a gauge transformation 

J L u j - ' + J h  ( i < j )  J i u J + J A  ( i > j )  
which does not affect the distribution ( 5 )  of the couplings. 

the alignment of neuron 1, the distribution of its field is given by 
In the following k =  u , h ,  denotes the local field in the direction of neuron 1. After 

$ P ( k ) = @ ( k ) J  ?rJ e-k2/2'2, (7) 

Then neurons 2 to N are updated. If during this updating exactly I (OGIG N-1) 
neurons are flipped, the new distribution @ ( k )  of the local field in the direction of 

$P'(k) = [ J" j + w d J , j  exp( -$)I N'J, 

"e'r.:=x 1 is give" by 

i=2 2rJ' _ m  

... L... n7 .L. wnere 3* represents m e  sei of ihe i flipped neurons. Tie Wunciion refiecis ihe Fact 
that neuron 1 points in direction of its local field. The evaluation of the integrals yields 

This function is shown in figure 1 for different numbers I of flipped neurons. Directly 

part of a Gaussian distribution since erf(x) = -erf(-x). 
"ftmr thP .I;nnmnn+ nmnrmn 1 +ha ,i;atrih..+inn -f G l l l i l l  h- ol..r.l.ir +..ACP ehn .... ". ..... -... -. .I..Y.".. I ..>- Y I ~ . . . U Y I I Y I .  "1 R I.L.. Y C  Y."YJ" L " . l U  &..U p"a'L.*c 

-6 -2  0 2 4 

hi 0,  

Figure 1. Distribution P' of the fields h p ,  ( I  = I )  of the fully asymmetric model ( A  = O )  
for 64 neurons and sequential update. The CUNCS are shown for I = O ,  1, 2, 3, 4, 5,  7, IS, 
31, where 1 denotes the number of Ripped neurons. The maximum of the CUNeS is 
monotonically decreasing with I for OS IS "12. 
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The main assumption in the following is that the probability a to be flipped 
('acceptance') is the same for every neuron and every time step ('equilibrium dynamics'). 
The probability that exactly 1 neurons are flipped before neuron 1 is asked again is 
then given by (?')a'( l -a)"-' .  The probability f (a )  for neuron 1 to be flipped as a 
function of the acceptance a can therefore be written as 

with 

Since we are looking for self-consistent solutions of (9), we are interested in analysing 
the solutions of f ( a )  = a. One can simply verify that there exist three solutions: a = 0 
(stable state), a = 1 (cycle of length 2) and a = f  (half of the spins are flipping). The 
last solution is most easily found by means of the relation 

which is a simple consequence of (11) .  Starting with a neuron configuration independent 
of the couplings the acceptance will be f for every neuron, i.e. every neuron has a local 
field which is governed by a complete Gaussian distribution. This will be the case for 
every time step. 

The stability of the above solutions can be analysed easily using the inequality 
cos-'( 1 -2x) > x for 0 < x <+. It turns out that the only stable solution is a =$ while 
the other two are unstable. 

We now turn to the calculation of the mean alignment per neuron. After the flip 
of I neurons we obtain: 

+m 

---L E' N -  21-- dkkP'(k)=-- ( 1 - 2 6 )  
JT;; 

E is then given by the average of E' over one period 

For the three solutions of (9) one calculates 

a=O 
E J 
-= --= -0.39895 
N G  

a = l  
E -=o 
N 
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Our numerical simulations of systems up to 1024 neurons give an extrapolated value 
of E,=  -(0.1990*0.0005)5 and we found it to depend only very weakly on the system 
size. As mentioned above, the only stable solution corresponds to a = f ,  which is 
verified very well by the simulations. Thus we get the same picture as for parallel 
dynamics: half of the spin, on average, are flipping during a run through the system. 
But here the local field of a flipping spin varies continuously as the others are updated 
whereas for parallel update only two different values are possible for every spin. This 
gives the difference in the resulting energies. 

It is an interesting fact that the calculated value of the remanent energy seems to 
be the exact one, although the annealed approximation used above does not take into 
account the full correlation in time. On the other hand it is known that the additional 
randomness introduced through the fully asymmetric couplings simplifies the properties 
of the model in such a way that annealed (tree) approximations might give right 
answers for the fully connected model [13, 141. 

5. Random-sequential update 

In the case of random-sequential update we have used the path-integral formulation 
introduced by Sommers [ll, 121. The starting point is a generating functional for spin 
and field configurations given by [7] 

I' 

where 

and (~(7) denotes a Gaussian stochastic process with 

( Q ( f ) ) v  = o  and ( d f ) d f ' ) ) v  = J 2 C ( 4  1'). (20) 

The averaged autocorrelation function 

1 N  
N i = l  

C(t, t')=- 1 (u;(f)uj(f')) 
has to be determined self-consistently via 

as was done in [7]. The energy is now given by the following spin-field correlation 

and therefore 
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A straightforward calculation yields 

E (  t )  = - Iy  d 7  e-''-" c(t, 7 )  (25) I,: 
with 

In the limit t + m  the system is in a stationary state (i.e. C ( t + A t ,  I ) =  C ( A t ) ) ,  and one 
gets for the 'equilibrium' value of the energy E = lim,Am E ( [ ) :  

E = -Jy 1,- d 7  eCC(7). (27) 

For 0 +OO ( T = O )  it is y =  I/& and with the help of (21) and (22) in [7] we can 
transform the integral and get 

with 

The numerical evaluation of this integral yields 

E,. = -(0.254 764 72* 10-*)I 

which is in accordance with the result from the computer simulations E,= 
-(0.2548+0.0005)5. From the derivation of this result one can conclude that it is 
non-trivial and cannot be derived by an annealed approximation, since in (25) the 
complete autocorrelation function in time has to he inserted. 

6. Discussion 

In this paper we have shown that in the fully asymmetric SK model it is possible to 
calculate analytically the energy for the three different kinds of update procedures 
(parallel, sequential and random sequential) with three different methods. The most 
powerful is the functional-integral method which is applicable for random sequential 
and up to some limits also for parallel update, but it fails for random sequential update. 
This is a troublesome fact since from a numerical point of view sequential dynamics 
is mostly and probably easiest studied, at least on a sequential computer. So in this 
case only a self-consistent annealed approximation could be performed (the simple 
annealed approximation would yield trivial results), but the value of the remanent 
energy is in very good agreement with our numerical simulations. It was mentioned 
above that this observation is not new for fully asymmetric couplings. As expected the 
value for the random sequential update is the lowest one. For deterministic dynamics 
like sequential and parallel the system remains in a state with higher remanent energy. 

Monte Carlo simulations in the SK model with symmetric couplings and with 
sequential update yield a value of E = -(0.704*0.007)5 [I51 for the remanent energy 
,which is much lower than all the above ones (of course different from the ground state 
energy which corresponds to the absolute minimum of the energy surface). 
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This is due to the fact that there is no real ‘freezing’ process in the systems with 
fully asymmetric couplings. As mentioned in the introduction this kind of analytical 
calculation is not possible for finite h (see (511, but perhaps can be studied by 
approximative methods in the future. 
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